

Welcome to pymipago

Contents:

	pymipago
	Features

	Credits

	Installation
	Stable release

	From sources

	Usage of the library

	pymipago
	pymipago package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	1.1 (unreleased)

	1.0 (2020-01-21)

	1.0b7 (2018-07-24)

	1.0b6 (2018-06-01)

	1.0b5 (2018-04-27)

	1.0b4 (2018-04-25)

	1.0b3 (2018-04-20)

	1.0b2 (2018-04-20)

	1.0b1 (2018-04-18)

Indices and tables

	Index

	Module Index

	Search Page

pymipago

[image: _images/pymipago.svg]
 [https://travis-ci.com/codesyntax/pymipago][image: _images/badge.svg]
 [https://coveralls.io/github/codesyntax/pymipago?branch=master][image: Documentation Status]
 [https://pymipago.readthedocs.io/en/latest/?badge=latest]Python package to make payment requests with Basque Government’s payment service

	Free software: GNU General Public License v3

	Documentation: https://pymipago.readthedocs.io.

Features

This package allows to use the Basque Governent’s Payment Service [https://www.euskadi.eus/mipago], a platform
that allows Basque public institutions to receive payments from the citizens.

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

The development of this package was funded by AMETX Erakunde Autonomoa [https://www.ametx.eus]

Installation

Stable release

To install pymipago, run this command in your terminal:

$ pip install pymipago

This is the preferred method to install pymipago, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for pymipago can be downloaded from the Github repo [https://github.com/codesyntax/pymipago].

You can either clone the public repository:

$ git clone git://github.com/codesyntax/pymipago

Or download the tarball [https://github.com/codesyntax/pymipago/tarball/master]:

$ curl -OL https://github.com/codesyntax/pymipago/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage of the library

There is one method to make payment requests using the Basque Government’s payment service:

from pymipago import make_payment_request

This method creates an XML file and creates a payment request on the Government platform
in order to have the basis to be shown to the end user.

According to the payment platform specs, after the registration, an HTML file is created
which must be shown to the user. The contents of this HTML file are returned when the method
is called. The method also returns the payment_code that the user should save for further checks.

This HTML file has an “auto-refresh” feature which allows to
redirect the user to the payment platform, where all the data of the payment is already
entered.

There, the enduser only has to select the bank of his choice to complete the payment.

After completing the payment the user will be redirected to the return_url.

See the documentation for more information about the parameters

This method takes some parameters, the explanation of them is the following:

	cpr: right now the only allowed value is ‘9052180’ which allows the use of the so called “Cuaderno 60” and “Formato 521”

	sender: is a 6 digit sender code. This code will be assigned by the Government platform in which the sender must be registered prior to the use of this library.

	format: right now the only allowed value is ‘521’ which allows the use of the so called “Cuaderno 60” and “Formato 521”

	suffix: is a 3 digit code. This code must be created by the sender in the Government platform.

	reference_number: is a 10 digit code. This code is created by the sender to identify the payments.

	payment_limit_date: is a datetime.date object with the date before which the payment must be completed. It must be a date in the future.

	quantity: how much must the user pay. It must be a string value in euro cents. For example: if 50 € must be payed, the value must be ‘5000’. If 11,50 € must be payed the value must be ‘1150’

	language: 2 letter code of the language in which the payment screen should be shown. Government platform only allows to select ‘eu’, ‘es’ and ‘en’. If any other value is used, the screen is presented in ‘es’

	return_url: a valid URL where the user will be redirected after the payment is completed.

	
	payment_modes: a list of 2 letter codes representing the payment mode. There are 2 payment modes enabled on the Government platform:

	
	‘01’: offline payment: the user has to download a PDF file and go to a bank to complete the payment

	‘02’: online payment: the user is presented a list of online bank platforms to complete the payment

	test_environment: (default: False) a boolean to use the testing environment of the Payment Service.

	
	extra: (default: {}): a dict to override default values of the payment service configuration. Currently supported values are the following (all of them are optional):

	
	‘message1’: format: {‘eu’: ‘XX’, ‘es’: ‘XX’}: basque and spanish texts to override the footer value of the payment document in PDF format

	‘message2’: format: {‘eu’: ‘XX’, ‘es’: ‘XX’}: basque and spanish texts to override the first legal text of the payment document in PDF format

	‘message3’: format: {‘eu’: ‘XX’, ‘es’: ‘XX’}: basque and spanish texts to override the second legal text of the payment document in PDF format

	‘message4’: format: {‘eu’: ‘XX’, ‘es’: ‘XX’}: basque and spanish texts to override the header text of the payment document in PDF format

	‘message_payment_title’: format: {‘eu’: ‘XX’, ‘es’: ‘XX’}: basque and spanish text to override the name of the payment .

	‘message_payment_description’: format: {‘eu’: ‘XX’, ‘es’: ‘XX’}: basque and spanish text to show the concept of the payment.

	‘citizen_name’: text to show citizen’s citizen_name in the payment document.

	‘citizen_surname_1’: text to show citizen’s citizen_surname_1 in the payment document.

	‘citizen_surname_2’: text to show citizen’s citizen_surname_2 in the payment document.

	‘citizen_nif’: text to show citizen’s citizen_nif in the payment document.

	‘citizen_address’: text to show citizen’s citizen_address in the payment document.

	‘citizen_postal_code’: text to show citizen’s citizen_postal_code in the payment document.

	‘citizen_territory’: text to show citizen’s citizen_territory in the payment document.

	‘citizen_country’: text to show citizen’s citizen_country in the payment document.

	‘citizen_phone’: text to show citizen’s citizen_phone in the payment document.

	‘citizen_email’: text to show citizen’s citizen_email in the payment document.

	‘logo_1_url’: url of the 1st logo shown in the payment document. You need to add this logo previously in the Payment Service. Check with them for further assistance.

	‘logo_2_url’: url of the 2nd logo shown in the payment document. You need to add this logo previously in the Payment Service. Check with them for further assistance.

	‘pdf_xslt_url’: url of the XSLT template that will be used to render several templates. Check with the Payment Service for further assistance.

pymipago

	pymipago package
	Submodules

	pymipago.constants module

	pymipago.exceptions module

	pymipago.utils module

	Module contents

pymipago package

Submodules

pymipago.constants module

includes some constants used by the library

pymipago.exceptions module

	
exception pymipago.exceptions.InvalidCPRValue[source]

	Bases: exceptions.Exception

Raised when the used CPR value is not valid.

	
exception pymipago.exceptions.InvalidFormatValue[source]

	Bases: exceptions.Exception

Raised when the used Format value is not valid.

	
exception pymipago.exceptions.InvalidReferenceNumber[source]

	Bases: exceptions.Exception

Raised when the format of the reference_number is not valid.

	
exception pymipago.exceptions.InvalidRegistration[source]

	Bases: exceptions.Exception

Raised when the registration of the payment on the Government platform
is invalid and has created an error

pymipago.utils module

util functions used by the main module

Module contents

	
pymipago.make_payment_request(cpr, sender, format, suffix, reference_number, payment_limit_date, quantity, language, return_url, payment_modes=['01', '02'], test_environment=False, extra={})[source]

	This method creates an XML file and creates a payment request on the
Government platform in order to have the basis to be shown to the end
user.

According to the payment platform specs, after the registration, an HTML
file is created which must be shown to the user. This HTML file has an
“auto-refresh” feature which allows to redirect the user to the payment
platform, where all the data of the payment is already entered.

There, the enduser only has to select the bank of his choice to complete
the payment.

After completing the payment the user will be redirected to the
return_url.

See the documentation for more information about the parameters

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/codesyntax/pymipago/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

pymipago could always use more documentation, whether as part of the
official pymipago docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/codesyntax/pymipago/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up pymipago for local development.

	Fork the pymipago repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/pymipago.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv pymipago
$ cd pymipago/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests:

$ flake8 pymipago tests
$ python setup.py test or py.test

To get flake8 just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website. Travis-ci will be used to test
your changes and the integration with master with several python versions.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5 and 3.6. Travis-CI will
run the tests and report to the Pull Request.

Tips

To run a subset of tests:

$ python -m unittest tests.test_pymipago

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run fullrelease a command from zest.releaser [https://pypi.org/project/zest.releaser] which will help you creating
a new version number, tagging it on git and bumpin the version number:

$ fullrelease

Credits

Development Lead

	Mikel Larreategi <mlarreategi@codesyntax.com>

Contributors

None yet. Why not be the first?

History

1.1 (unreleased)

	Nothing changed yet.

1.0 (2020-01-21)

	Use new Travis CI
[erral]

	Remove bumpversion as dependency
[erral]

1.0b7 (2018-07-24)

	Force control digits
[erral]

	Test against python 3.7
[erral]

	Update dependency versions
[erral]

1.0b6 (2018-06-01)

	Fix control digit calculation
[erral]

	Document new extra parameters for logos and XSLT template.
[erral]

1.0b5 (2018-04-27)

	Add extra parameters to send logo urls
[erral]

	Add an extra parameter to send the XSLT template
[erral]

1.0b4 (2018-04-25)

	Add an extra parameter to register additional optional information into the payment service
[erral]

1.0b3 (2018-04-20)

	Previous was an errored relase.
[erral]

1.0b2 (2018-04-20)

	Add a parameter to use the testing environment of the Payment service.
[erral]

1.0b1 (2018-04-18)

	Implementation of notebook 60 payments in short format (521)
[erral]

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pymipago	

 	
 	
 pymipago.constants	

 	
 	
 pymipago.exceptions	

 	
 	
 pymipago.utils	

Index

 I
 | M
 | P

I

 	
 	InvalidCPRValue

 	InvalidFormatValue

 	
 	InvalidReferenceNumber

 	InvalidRegistration

M

 	
 	make_payment_request() (in module pymipago)

P

 	
 	pymipago (module)

 	pymipago.constants (module)

 	
 	pymipago.exceptions (module)

 	pymipago.utils (module)

 All modules for which code is available

	pymipago

	pymipago.exceptions

 Source code for pymipago

-*- coding: utf-8 -*-
from .constants import INITIALIZATION_XML
from .constants import LOGO_1_TEMPLATE
from .constants import LOGO_2_TEMPLATE
from .constants import LOGO_WRAPPER_TEMPLATE
from .constants import MESSAGE_1_TEMPLATE
from .constants import MESSAGE_2_TEMPLATE
from .constants import MESSAGE_3_TEMPLATE
from .constants import MESSAGE_4_TEMPLATE
from .constants import MESSAGE_PAYMENT_DESCRIPTION
from .constants import MESSAGE_PAYMENT_TITLE
from .constants import PDF_XSLT_TEMPLATE
from .constants import PRESENTATION_XML
from .constants import PROTOCOL_DATA_XML
from .exceptions import InvalidCPRValue
from .exceptions import InvalidFormatValue
from .exceptions import InvalidRegistration
from .utils import _build_payment_code_notebook_60
from .utils import _calculate_payment_identification_notebook_60
from .utils import _calculate_reference_number_with_control_digits_notebook_60
from .utils import _parse_initialization_response

import requests

[docs]def make_payment_request(
 cpr, sender, format, suffix, reference_number, payment_limit_date, quantity,
 language, return_url, payment_modes=['01', '02'], test_environment=False, extra={}):

 """This method creates an XML file and creates a payment request on the
 Government platform in order to have the basis to be shown to the end
 user.

 According to the payment platform specs, after the registration, an HTML
 file is created which must be shown to the user. This HTML file has an
 "auto-refresh" feature which allows to redirect the user to the payment
 platform, where all the data of the payment is already entered.

 There, the enduser only has to select the bank of his choice to complete
 the payment.

 After completing the payment the user will be redirected to the
 `return_url`.

 See the documentation for more information about the parameters

 """

 if test_environment:
 from .constants import TEST_ENVIRON_INITIALIZATION_URL as INITIALIZATION_URL # noqa
 from .constants import TEST_ENVIRON_SERVICE_URL as SERVICE_URL
 else:
 from .constants import PROD_ENVIRON_INITIALIZATION_URL as INITIALIZATION_URL # noqa
 from .constants import PROD_ENVIRON_SERVICE_URL as SERVICE_URL

 if cpr != '9052180':
 raise InvalidCPRValue('We only accept payments with CPR 9052180')

 if format != '521':
 raise InvalidFormatValue('We only accept payments with Format 521')

 payment_identification = _calculate_payment_identification_notebook_60(
 payment_limit_date, suffix
)

 reference_number_with_control_digits = _calculate_reference_number_with_control_digits_notebook_60(# noqa
 sender,
 reference_number,
 payment_identification,
 quantity,
)

 payment_code = _build_payment_code_notebook_60(
 sender, reference_number, payment_identification, quantity)

 # Message overrides

 message_1 = ''
 if 'message_1' in extra:
 message_1 = MESSAGE_1_TEMPLATE.format(
 es=extra.get('message_1').get('es', ''),
 eu=extra.get('message_1').get('eu', ''),
)

 message_2 = ''
 if 'message_2' in extra:
 message_2 = MESSAGE_2_TEMPLATE.format(
 es=extra.get('message_2').get('es', ''),
 eu=extra.get('message_2').get('eu', ''),
)

 message_3 = ''
 if 'message_3' in extra:
 message_3 = MESSAGE_3_TEMPLATE.format(
 es=extra.get('message_3').get('es', ''),
 eu=extra.get('message_3').get('eu', ''),
)

 message_4 = ''
 if 'message_4' in extra:
 message_4 = MESSAGE_4_TEMPLATE.format(
 es=extra.get('message_4').get('es', ''),
 eu=extra.get('message_4').get('eu', ''),
)

 message_payment_title = ''
 if 'message_payment_title' in extra:
 message_payment_title = MESSAGE_PAYMENT_TITLE.format(
 es=extra.get('message_payment_title').get('es', ''),
 eu=extra.get('message_payment_title').get('eu', ''),
)

 mipago_payment_description = ''
 if 'mipago_payment_description' in extra:
 mipago_payment_description = MESSAGE_PAYMENT_DESCRIPTION.format(
 es=extra.get('mipago_payment_description').get('es', ''),
 eu=extra.get('mipago_payment_description').get('eu', ''),
)

 logo_urls = ''
 if 'logo_1_url' in extra:
 logo_urls += LOGO_1_TEMPLATE.format(
 url=extra.get('logo_1_url', '')
)

 if 'logo_2_url' in extra:
 logo_urls += LOGO_2_TEMPLATE.format(
 url=extra.get('logo_2_url', '')
)

 if logo_urls:
 logo_urls = LOGO_WRAPPER_TEMPLATE.format(
 data=logo_urls,
)

 pdf_xslt_url = ''
 if 'pdf_xslt_url' in extra:
 pdf_xslt_url = PDF_XSLT_TEMPLATE.format(
 url=extra.get('pdf_xslt_url', '')
)

 initialization_xml = INITIALIZATION_XML.format(
 code=payment_code,
 cpr=cpr,
 suffix=suffix,
 quantity=quantity,
 payment_identification=payment_identification,
 end_date=payment_limit_date.strftime('%d%m%y'),
 format=format,
 sender=sender,
 reference_with_control=reference_number_with_control_digits,
 reference=reference_number,
 message_1=message_1,
 message_2=message_2,
 message_3=message_3,
 message_4=message_4,
 message_payment_title=message_payment_title,
 mipago_payment_description=mipago_payment_description,
 citizen_name=extra.get('citizen_name', ''),
 citizen_surname_1=extra.get('citizen_surname_1', ''),
 citizen_surname_2=extra.get('citizen_surname_2', ''),
 citizen_city=extra.get('citizen_city', ''),
 citizen_nif=extra.get('citizen_nif', ''),
 citizen_address=extra.get('citizen_address', ''),
 citizen_postal_code=extra.get('citizen_postal_code', ''),
 citizen_territory=extra.get('citizen_territory', ''),
 citizen_country=extra.get('citizen_country', ''),
 citizen_phone=extra.get('citizen_phone', ''),
 citizen_email=extra.get('citizen_email', ''),
 logo_urls=logo_urls,
 pdf_xslt_url=pdf_xslt_url,
)

 response = requests.post(
 INITIALIZATION_URL,
 data={'xmlRPC': initialization_xml}
)

 registered_payment_id, error = _parse_initialization_response(response.content) # noqa

 if registered_payment_id is not None:
 payment_mode_string = ''
 for payment_mode in payment_modes:
 payment_mode_string += "<paymentMode oid='{}'/>".format(payment_mode) # noqa

 presentation_request_data = PRESENTATION_XML.format(
 language=language,
 payment_mode=payment_mode_string
)

 protocol_data = PROTOCOL_DATA_XML.format(
 return_url=return_url
)
 response = requests.post(
 SERVICE_URL,
 data={
 'p12iOidsPago': registered_payment_id,
 'p12iPresentationRequestData': presentation_request_data,
 'p12iProtocolData': protocol_data
 }
)

 return response.text, registered_payment_id

 raise InvalidRegistration(error)

 Source code for pymipago.exceptions

-*- coding: utf-8 -*-

[docs]class InvalidCPRValue(Exception):
 """Raised when the used CPR value is not valid. """
 pass

[docs]class InvalidReferenceNumber(Exception):
 """Raised when the format of the reference_number is not valid. """
 pass

[docs]class InvalidFormatValue(Exception):
 """Raised when the used Format value is not valid. """
 pass

[docs]class InvalidRegistration(Exception):
 """Raised when the registration of the payment on the Government platform
 is invalid and has created an error
 """
 pass

 _static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to pymipago

 		
 pymipago

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage of the library

 		
 pymipago

 		
 pymipago package

 		
 Submodules

 		
 pymipago.constants module

 		
 pymipago.exceptions module

 		
 pymipago.utils module

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 1.1 (unreleased)

 		
 1.0 (2020-01-21)

 		
 1.0b7 (2018-07-24)

 		
 1.0b6 (2018-06-01)

 		
 1.0b5 (2018-04-27)

 		
 1.0b4 (2018-04-25)

 		
 1.0b3 (2018-04-20)

 		
 1.0b2 (2018-04-20)

 		
 1.0b1 (2018-04-18)

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

